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ARTICLE INFO ABSTRACT
Article history: One-dimensional transverse oscillations in a layer of a non-linear elastic medium are considered, when
Received 8 April 2008 one of the boundaries is subjected to external actions, causing periodic changes in both tangential com-

ponents of the velocity. In a mode close to resonance, the non-linear properties of the medium may lead
to a slow change in the form of the oscillations as the number of the reflections from the layer boundaries
increases. Differential equations describing this process were previously derived. The equations obtained
are hyperbolic and the change in the solution may both keep the functions continuous and lead to the
formation of jumps. In this paper a model of the evolution of the wave patterns is constructed as integral
equations having the form of conservation laws, which determine the change in the functions describing
the oscillations of the layer as “slow” time increases. The system of hyperbolic differential equations previ-
ously obtained follows from these conservation laws for continuous motions, in which one of the variables
is slow time, for which one period of the actual time serves as an infinitesimal quantity, while the second
variable is the real time. For the discontinuous solutions of the same integral equations, conditions on the
discontinuity are obtained. An analogy is established between the solutions of the equations obtained
and non-linear waves propagating in an unbounded uniform elastic medium with a certain chosen elastic
potential. This analogy enable discontinuities which may be physically realised to be distinguished. The
problem of steady oscillations of an elastic layer is discussed.

© 2009 Elsevier Ltd. All rights reserved.

When investigating transverse elastic waves, both continuous and discontinuous,!=3 qualitatively new properties of their behaviour,
due to the non-linearity of the equations and the anisotropy of the properties of the medium in planes of constant phase, were found. The
most interesting results were obtained for quasi-transverse waves, in which, as is well known, the non-linearity of the relation between
the stresses and strains has a cubic form, i.e., they are far weaker than in longitudinal or gas-dynamic waves. The wave must travel a much
greater distance in order for its non-linear changes to be observed experimentally. To overcome this difficulty it is proposed to consider
the problem of waves which propagate transverse to the elastic layer and which are alternately reflected from its boundaries. In this case
the wave covers as large a distance as required while remaining within a region of finite size.

In order to discuss the change in the longitudinal component of the strain in the wave, the medium is assumed to be incompressible.
It is assumed that the waves are produced by periodic motion of one of the boundaries in its plane. The other boundary of the layer is
assumed to be fixed. For weak external actions, the non-linearity in the wave behaviour that arises is caused by the fact that the external
action is close to resonance. The non-linear changes may accumulate with time and change the form of the oscillations. To describe the
evolution of the oscillations a slow time was introduced earlier and a hyperbolic system of equations was obtained. The real time acts as the
second variable in these equations, i.e., in the role of the “spatial” variable. The hyperbolic system allows of the formation of discontinuities.
Below, using the classical integral conservation laws for the model of an elastic medium, a model of the oscillatory process in the form of
integral equations is constructed, from which, in the case of continuous motion, the above-mentioned differential equations are obtained
by standard operations, while for the discontinuous motions relations are obtained on the front of the jump.

1. Specification of the elastic medium

Suppose plane uniform transverse waves propagate in both directions in a layer of constant thickness L of an incompressible non-
linear elastic medium in a direction orthogonal to the boundaries. These waves are due to periodic oscillations of one of the boundaries
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in its plane, while the other boundary of the layer is fixed. The system will be described in Lagrange variables in a Cartesian system of
coordiates {x;}of the initial state. The direction of propagation of the oscillations is taken as the x=x3 axis, the other two axes, x; and
X5, are parallel to the boundaries of the layer and, consequently, to the propagating wavefronts. The deformation is characterized by the
components of the displacement gradient tensor u;; = ow;/ 8xj, where w; are the components of the displacement vector. As a consequence
of the incompressibility 0ws/0x = u3 = const, and we can take u3 =0. We will assume that the medium is homogeneous, i.e., its density pg and
the temperature 6 are constant in the initial state. We will further put pg = 1. In one-dimensional motions of the incompressible medium,
where w; =w;(x,t), when a plane wave propagates, only the components of the shear deformation change dw;/dx =u;(x,t), i=1,2.

Hence, the elastic potential, i.e., the internal energy per unit volume of the medium, is given by the function ® = ®(uy, u;, S), where Sis the
entropy per unit mass of the medium. It is assumed that the medium is slightly non-linear (the deformation is small) and possesses a slight
anisotropy in the plane of the wavefront. Then, the function ®(u, u, S) can be specified by an expansion in series in small deformations,
retaining the first principal terms, representing the non-linearity and anisotropy!2

K 2
® = g(u%+u§)+§(u§—u%)—z(u?+u§) +080(S-Sp) (11)

The first term corresponds to a linear isotropic medium; its coefficient f differs only slightly from the shear modulus and determines the
velocity of linear isotropic waves ¢y = \ﬁ The isotropic non-linearity of the function ® is represented by the term with the coefficient k,
which can have any sign. The coefficient g on the term having the anisotropic structure is taken to be small, so that the anisotropy and the
non-linearity have the same order of magnitude. If we assume that the components of the deformation u; and their change have an order of
smallness & while the elastic constants of the medium fand k are finite, we must assume that the coefficient g has a value of the order of £2.
The last term with the change in entropy S - Sy is only important when investigating solutions with discontinuities, since in the assumed
absence of heat exchange in the elastic medium in continuous processes the entropy does not change. For quasitransverse shockwaves it
is well known,!2 that in jumps of small intensity the change in entropy on the front is three orders of magnitude less than the order of
change of the remaining quantities. Hence, in expansion (1.1) the entropy is represented by the linear term with a constant coefficient.
The differential equations of one-dimensional motions of an incompressible elastic medium have the form'?2

0v; 9 (od) Jdu; 9V,
ot 5};( )

~ ox\d,

a - Th? (12)

Here v; = 0w;/0t are the components of the velocity vector.
For waves of low intensity, propagating in a uniform background in one direction of the x axis, this system of four equations can be
approximated, while retaining the required accuracy, by replacing it by a system of two equations2>

au,’ 0 aq)* _ .
—jiyx(a—ul—) = 0, 1 = 1,2 (]'3)

in which the expression for ®- has the same structure as in (1.1), but with changed coefficients f+, g+, k+. The upper sign in these equations
corresponds to waves propagating in the positive direction of the x axis, while the lower sign corresponds to waves propagating in the
negative direction of the x axis.

Suppose the layer considered occupies the region between the planes x=0 and x = L. The condition v; = 0 is satisfied on the fixed boundary
x=0. The other boundary x =L performs small oscillations in its plane, as given by the specified law v; ={;;(t). The elastic layer, when there is
no non-linearity (k =0) and no anisotropy (g=0), possesses natural oscillations, the period of which Ty = 2L/c, is determined by the width
of the layer L and the velocity of linear transverse waves ¢y = \ﬁ . The presence of small anisotropy and non-linearity makes the velocities
of the two transverse waves ¢; and ¢, different, but the difference between the velocities cg, c; and c; is of the order of £2.

The functions ys;(t), specifying the amplitudes of the oscillation of the boundary, are assumed to be periodic with period T, close to Ty,
differing from it by an amount of the order of 2. When investigating the continuous evolution of the waves* it was useful to introduce the
quantity a=2L/T, which has the dimension of velocity, and its difference from the characteristic velocities cg, c; and c; is also of the order
of £2. The quantities {s; are also assumed to be small compared with the characteristic values u;. As was shown in Ref. 4, to achieve steady
oscillations of the layer, the boundaries {5; supporting this mode of oscillation must be of the order of 3.

For the functions representing the oscillations on the mobile (right) boundary of the layer (for x=L), the following hyperbolic system of
differential equations was obtained in Ref. 4,

Q_ui_g(z_)if) _vi®
ot 0&\du;) ~ L (1.4)

in which one of the variables is the slow time T while the second variable & =at varies in the range 0 < £ < 2L during one period of real time.
The function F, obtained previously in Ref. 4, depends both on the current values of u; and on the values of u; and u;u; averaged over a
period. An expression for this will be derived below (equality (4.1)).

If we put {5; equal to zero in Eqs (1.4), these equations acquire the form of Eqs (1.3), which describe waves propagating in the negative
direction of the x axis, but with ®- replaced by F.

For fixed values of the average quantities mentioned, the operator on the left-hand side of Eq. (1.4) is hyperbolic. As a consequence of
this, Eqs (1.4) may have solutions which lead to the formation of discontinuities. The relations on the fronts of the discontinuity must be
obtained from the integral equations corresponding to differential equations (1.4). These integral equations are obtained below.
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2. Integral conservation laws and their modification

We will show how, starting from the integral equations of the mechanics of an elastic medium, one can obtain integral equations which
express the conservation laws connecting the quantities when x=L. Equations (1.4) follow from these integral equations in the case of
continuous solutions, while in the case of discontinuous solutions one obtains relations on the discontinuities.

The integral equations of the theory of elasticity for one-dimensional motions,'? which hold for the arbitrary piecewise-continuous
functions v; and u;, have the form

Xz
jvdx+a‘1’ _9® =0, judx+v| -yl =0
au au B d X=X X=X,
; —x, Oifeoy, | (2.1)

Here x; and x; are arbitrary constant quantities. The first group of equations expresses the law of conservation of momentum, while the
second group expresses the relation between the deformations and the velocities of the medium. The law of conservation of energy in the
assumed approximation is “detached” from the system and serves for the subsequent calculation of the change in entropy. It is therefore
not used here. Equations (1.2) follow from Eqs (2.1) for the differentiable functions.

The integral equations corresponding to the approximate form of Eqs (1.3) for waves travelling in one direction and the conditions on
the discontinuity which follow from them have the form

- J‘udx+(aaq;) ] _(aa?k) =00 Wi = [‘%ﬂ

1

X (2.2)

To obtain the integral equations for the new model, the accurate integral equations of the theory of elasticity (2.1) serve as the initial
ones. Integrating them over an arbitrary time interval (1, t; ), we obtain

Xy Xy 153

Jvdx| - [vdx] -] gdt g—‘l’dz =0
Xy t=1t, Xy =1 4 X =X, 1y X=X

X, X, 1 1,

Jwax|  —Judx|  -[var|  +[var =0

Xy =1, Xy t=1 ty X =X, 1y X=Xy

These equalities can be regarded as the equality to zero of the circulation over the contour of an arbitrary rectangle x; <x <x,,t; <t<ty
in the x, t plane of each of the vector fields

pi = {pip pix}’ q,' = {qi,,%x}» i = 172
the components of which along the x and t axes have the form

0D _ _
Pix = Vi Py = S 9 = o i T V;

Since the chosen rectangle is arbitrary, the circulation of each of the vectors p; and q; is equal to zero over any closed contour C in the x,
t plane:

$(pidx+ pdt) = 0, §(q,dx+q,dt) = 0
C c (2.3)

This representation of the equations enables us to calculate the change per period of the integrals of the quantities u; and v;. The
calculations were carried out approximately, satisfying the assumed degree of accuracy.
We transform the integrand in expressions (2.3). Instead of the elastic potential ® (1.1) we introduce the new function

2 2
Uy T Uy 2L
F(u,uy) = ®-a > ;o a= T = const (2.4)

The function F is the result of subtracting the linear isotropic part from the elastic potential, and hence it is of the order of &4, and its
derivatives F;(u) = OF/Ou; are of the order of &3.
Instead of the functions u; and v; we will introduce the new variables

w, = Uv,—au;, w; = U;+au,; (2.5)

L 1 1A 1
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They are Riemann invariants of the left-hand sides of the system of equations

dv, I, du; du)\ OF,

W—(I-é;'l'a(g—aa_x)—g

v, I, au,—+ du;y  JF; k=12

R T AL T R LA (2

of the equivalent initial system (1.2). Here

1, - 1, -
u, = 2—a(w,\.—w2), U = §(wk+w,t)

(2.7)
In the new variables, Eqs (2.6) take the form
+

6%+(.;)—x(iawf—f‘,) =0, i=1.2 08)
The boundary conditions for this system can also be written in terms of the function wl.i

w; = —w, when x = 0, w, +w;, =2y, when x = L

Equations (2.3) can be written in terms of the function Wl.i
$((—aw; - Fpdt—widx) = 0, §((aw] - F)di—w;dx) = 0
c c* (2.9)

Since the functions F;(u;) themselves are of the order of €3, we will take as their arguments the solution of the linear problem, i.e., Eqs
(2.6) or, correspondingly, (2.8) for w,.i with zero right-hand sides, in which we put F; =0. The solution of the linear problem has the form of
travelling waves with constant velocities +a

0+ X 0— X
w, = @|t—-=1| w, = ﬁ-(t+—)
L (‘pl( a) 1 1 a

Taking into account the smallness of the functions s;(t) of the external action, the boundary conditions of the linear problem are

w, = —w?_ when x = 0 and = L

Hence it follows that ¢; = —V; for the same values of the arguments, while the functions ¢; and J; are periodic with period T.

3. The non-linear change in the integral quantities over a period

In order to obtain integral equations analogous to (2.2) for the model describing slow changes in the amplitude and form of the
t t

oscillations, we need to calculate the change over a period T of the quantities /uidt and /v,-dt for an arbitrary time interval [t1, t3].

t t

For each of the two groups of equations (2.9) we choose its contour: C~ and C" respectively. For the first group we take as C~ the contour
ADHE (see Fig. 1), consisting of the two characteristics AD and EH of the family x + at = const, along which the values of w?‘ are preserved,
and of the end sections AE and DH, belonging to the layer boundaries, where W?+ = —W?*. The vertices of this quadlateral have coordinates
A(L,t1), D(O,t1 +T[2), E(L,t;) and H(O,t; +T/2). The distance between the points A and E along the time axis can have any value, including
as small as desired. For the second group of equations (2.9), in the same way as C*, we choose the contour BDHF, formed by the two
characteristics of the family x — at=const on which W?+ = const, and the end sections, which belong to the boundaries of the layer. The
vertices B and F have coordinates B(L,t; +T), F(L,t; +T).

From the two equations of the first group (2.9) we obtain

E H E H D H
afwydt-afwidt = [Fdt~ [Fdi- [Fdt+ [Fdt
A D A D A E (3.1)
Similarly, the second group of equations (2.9) gives
F H H F B F
afwidi-afwidt = [Fdi-[Fdi~[Fdt+[Far
B D D B D H (3.2)

We add the equations of the first and second groups with the same subscripts i term-by-term, taking into account the fact that on the
common section DH of the left boundary according to the boundary conditions W;“ = —w; . Then the integrals along this section cancel out.
Moreover, as was stated above, the functions ¢, and 9, are periodic with period T. Hence, the functions F;(¢, U} ) have the same values on
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Fig. 1.

the sections AE and BF, shifted by a period T along the time axis. Hence, when Eqs (3.1) and (3.2) are added with an error of the order of &%,
the integrals along sections AE and BF cancel out. As a result we obtain

E F
[widt+ [widt = A,
A B
D H F B
all, = - [Fidi+ [Fidt + [Fidt - [Far
A E H D (3.3)

E
We will first convert the left-hand side of the first equation of (3.3). We add and substract /wl.*dt. We obtain

A

t,+T 1, t,
[ widi=[widi+ [(w;+w))dt = A,

6n+T I3 1

[5)
The first two terms give the change in the quantity / w;’dt over a period T. If this difference is divided by T, the expression obtained

5]
can be treated as the derivative with respect to the slow time T, for which one period T of real time serves as the unit of measurement. The
slow time T was also introduced earlier (Ref. 4). The integrands in the last term on the left-hand side of the last equality, by definition (2.7),
represent the components of the velocity v; on the right boundary of the layer, where, according to the boundary conditions v; = {s;(t). So
the last equation takes the form

t t
d( o+ ‘ _
Td—TJw,- di+2 [yt = M,
! " (34)

F
Similarly, adding and subtracting /wi‘dt on the left-hand side of (3.3), we obtain
B

1) tz
de
- T(ch.wi dt + ZJ.Wi(t)df = M,
! : (3.5)
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Adding and subtracting Eqs (3.4) and (3.5) between each other for each subscript i and taking equalities (2.7) into account, we return to the
initial components of the velocity and deformation

1

I
d ¢ 2 ¢ M
T Juwidt = = vyt = —

L f (3.6)
I

%cj vdt =0
L (3.7)

We recall that aT = 2L, which simplifies the form of the coefficient of the second term. The integrands in Eqs (3.6) and (3.7) are evaluated on
the right-hand boundary of the layer with x=L. On this boundary v; ={s;(t), and hence, in view of the assumed periodicity of the functions
which define the shift of the boundary points, Eqs (3.7) are satisfied identically.

We will now obtain an explicit form of the expressions for M;, which were introduced by Eqs (3.3). To do this we integrate the functions
Fi(@y, D) over the sections indicated in the (x,t) plane (see the figure), maintaining the assumed accuracy. The functions F; = dF/du; are
evaluated in terms of the specified elastic potential (1.1), (2.4):

oF

2. 20 .
F; i giui—Ku(uy+uy), i=12

i
2 2
g, =f-g-a, g, =f+g-a

The quantity a? was introduced so that f - a2 ~ 2 and the coefficient of anisotropy of the medium g has the same order £2, and hence the
new coefficients g; and g, are also of the order of £2, and both terms in the functions Fj(u;) are of the order of £3. Consequently, satisfying
the limits of accuracy, when calculating F; the quantities u;, can be replaced by their linear approximation in g, i.e., we assume

8- A(or+2)-0(s-2)

gi K ) )
F; ﬂ(ﬂi—%)_g(ﬂi—%)[((f)l—1‘)1) +(0,—9,)°]

Then

When evaluating the integrals of these functions along the sections indicated in relations (3.3), we take into account the fact that along
the sections AD and EH, along the characteristics of the family x +at = const, the functions ¥U; are constant and equal to their values ¥;(A)
and U;(E) at the corresponding points on the right boundary. Along the sections AD and EH the values of the functions ¢; are transferred
along the characteristics of the other family (x — at = const) from the sections of the boundary x=LAB(ty, t; + T) and EF(t, t; + T) respectively.
Hence, the integration along the sections AD and EH can be replaced by integration along the sections AB and EF of the t axis, where
the integration is carried out in both cases over a time interval equal to the period T. Along the sections DB and HF, along the family of
characteristics x — at = const, the functions ¢; are constant and equal to their values on the right boundary: on the section DB ¢; = ¢;(B) and
along the section HF ¢; = @;(F). In view of the periodicity of the functions ¢; these values are equal to ¢;(A) and ¢;(E) respectively. Similarly,
the quantities VJ; are transferred from the same sections AB and EF of the right boundary to the characteristics of the family x +at = const
and are integrated with respect to time over a period. After carrying out the integration, the functions ¥; are everywhere replaced by —;,
in accordance with the boundary conditions.

As a result we obtain expressions, in explicit form, for the right-hand sides of Eqs (3.6)

‘/M“i
— = Pi(A) - P(E)

aT (3.8)
where
1 K, 3 2 _ _ 2
p; = ——2[81‘(91‘—_5(% TO;P3_; + 3(Pi(Pf2+ Q93+
2a 4a
+2(T)3—i(P1‘P2+3‘7’11%‘"@22@[‘*2@12@34)} i=12 (3.9)
2T 2T
e, = TJ.(Pidt’ 0, = TJ(Pi(det; iLj=172
0 0 (3.10)

In order to substitute the expressions obtained for M; into Eqgs (3.6) we must revert from the functions ¢; to the initial components of
the deformations u; using formulae (2.7). Since the functions P; themselves are of the order of &3 (as follows from their form), in expressions
(2.7) it is sufficient to use the approximation for wii, linear in €, and this means that on the right boundary (where all the equations are
written) we can assume that v;5 =0 and we can put ¢; = —au; in the expressions for P;. In order that the left-hand sides of Eqs (3.6) should
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take the standard form of the conservation laws, we make the replacement of variables at=§ (as was done earlier in Ref. 4), where the
variable £ with dimension of length varies over a single reflection cycle 0 <& <2L.

As a result we obtain equations, the left-hand side of which can be written in the form of integral conservation laws for quantities on
the right-hand boundary of the layer x =L, taking into account the external actions, represented by the functions j;

13} &,
d 1
=Py L + P, = 7 [WiEIE
& & (3.11)

The expressions for the functions P; in terms of u; have the form

1 K _\3 _ _ 2
P, = %{giui—z[(ui+ui) +(u;+u)(us_j+uy_;) +

+(3hii+h3—i,3—i)ul+2h12u3—i]}’ i=12
(3.12)

T
-2 .
u; = Tjuidt, h; = Tju udt — i,j=12
(313)

The latter quantities are functions of 7.

4. The elastic potential of the equivalent medium

The differential equations and conditions on the discontinuity. The expressions P;(u1, u;) enable us to consider them as derivatives of a
certain function FHuq, uy), i.e., P; = dF/0u;. Considering the role which these derivatives P; = 07/du; play in Eqs (3.11) of the conservation
laws we can treat the function F{uy, uy) introduced in this way as an elastic potential of a certain medium, the properties of which enable
us to describe the evolution of the oscillations. An explicit form of the expression for this function is obtained as a result of corresponding
integration of Eqs (3.12)

£ 2 K _ _ 22
F(uy, uy) = g(uf+u§)+§(u§—u§)-z[(ul +iy)" + (y +01,)°] = 2R Uy

, _
_ . K co X
—2R%(hy +hy), &= Egz_i(hn_h“)’ k=g (41)

- f-a
f= 2a

The function Fis identical with that obtained previously in Ref. 4 when considering continuous processes using differential equations
and occurs in Eq. (1.4).

System (3.11) takes the form where the left-hand side of the equations are identical with those of Eqs (2.2) for waves in an unbounded
space, which propagate in one direction:

& 3
d oF +0F 1 -
dE - —J‘\u»dg, i=1,2
dtju L) ™!
1 au £=% au £=% £ (4.2)

In the case when derivatives of the functions u;(§, T) exist, we obtain the following differential equations from Eqs (4.2)

% _2(05) Ly
9t 9E\au,) ~ LV (4.3)

the structure of the left-hand sides of which are similar to the structure of the left-hand sides of Eqs (1.3) for waves travelling in the negative
direction in an unbounded elastic space. In the model obtained, the quantity & =at (proportional to the time) serves as the spatial variable,
which can only increase.
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When the solution is piecewise-continuous, and the functions {s are bounded, from Eq. (3.11) we obtain relations on the discontinuity
which are the same as in the last equation of (2.2)

Wlu,] = [0F/du,), W = di/dt e

Note that the left-hand sides of Eqs (4.2)-(4.4) are identical with the left-hand sides of Eqs (1.3) and (1.4) if we replace ®- in them by F.
Consequently, Eqs (4.2)-(4.4) are equivalent to the equations which describe the propagation of waves in an elastic medium, the properties
of which are determined by how the function + depends on u; and u5. The quantities f, g and & occur in the coefficients of this relation,
the first two of which are, in general, functions of 7. The values of these quantities are calculated by averaging the solutions over the period
T. Over a single period the changes in these quantities are of the order of &3, which enables them to be assumed to be constant over this
time. It should be noted that even if the initial elastic medium is isotropic (g=0), as a result of the non-linear evolution the new medium
may acquire wave anisotropy (g # 0, if ho, # hy1) and lead to the occurrence in the equation of a term of the same order, which is also
non-linear. Moreover, Eqs (4.2) and (4.3) include external actions, specified by the functions ys;(&).

The fact that Eqs (4.4) are identical with the conditions on the discontinuities, which propagate on a uniform background in a medium
with elastic potential A(uq, uy), enables us to apply the results of previous investigations2? to this case. If the oscillations are unsteady in
the slow-time mode, i.e., they depend on T, the function F also depends on T and the medium used for the comparison will also vary with
7. We can introduce the new variables u;” = u; + 4;. In these variables Eqs (4.3) remains as before with the exception of the fact that a term
du; /97 is added to its right-hand side. Since &; = ©;(7) and d/du; = d/du", the relations on the discontinuity (4.4) in this conversion retain
their form. With this replacement F as a function of 17" does not contain cubic terms, while the term of the fourth power is isotropic in the
X1, X2 plane, i.e., it has a form for which the conditions on the discontinuity have been investigated in detail.2

Just as in the case of the propagation of perturbations in a uniform state, in many cases (and in particular, with the assumption of
“vanishing viscosity”) to obtain a discontinuity it is necessary to satisfy the conditions of a priori evolutionability, which consists of the fact
that the characteristics of one of the families arrives as the discontinuity from both sides, whereas the characteristics of the other family
passes through it. The discontinuities can then be divided into two types: fast and slow shock waves? respectively, the characteristics of
the family of which arrive at the discontinuity from both sides.

Equations (4.2) and (4.3) show that the derivatives of u; with respect to T are continuous if the derivatives u; with respect to & are
continuous, and at the instant of time T considered they depend, via the averaged quantities (3.13), on the preceding time interval of
duration T. This enables us to consider the solution in the variable £ in the region 0 <& <2L. The ends of this section can be identified,
i.e., we must require the equality of u; when £=0 and for =L for all T, with the exception of the instants of arrival at those points of the
discontinuity of the solution described by equalities (4.4). Here Eqs (4.3) will be considered on a closed curve of length L without any
boundary conditions.

5. Steady oscillations of the layer

We will consider steady oscillations when u; is independent of 7. The case of one-dimensional transverse oscillations, when the defor-
mation of the medium is characterized by a single variable, was investigated in Ref. 6. Since du;/0T = 0, Eqs (4.3) can be integrated with
respect to &:

0F/ou; = -A;(§), & = at (5.1)

The functions A;(&) are the primitives of {5;(£)/L, representing the displacements of the boundary divided by L. For a periodic solution to
exist it is necessary that the functions A; should be periodic, i.e., that the integral of ys;(£) over a period should be equal to zero. If we assume
Fto be a known function of u; and u,, Eqs (5.1) enable the possible values of u; to be obtained independently for each & When & changes,
these values may change continuously and may undergo discontinuities, on which, according to relations (3), the following equalities must
be satisfied

[0F/du;] = O (5.2)

For qualitative investigations and to construct examples of the oscillations we can specify the function Fuy, u;) in a certain way, obtain
u;(£), calculate il; and h;; using relations (3.13), and then, using equalities (4.1), obtain the coefficients which define the elastic potential
® of the oscillating medium. If, when formulating the problem, the properties of the elastic medium must be specified in a quite definite
way, it becomes possible to choose the parameters of the function /u1, uy) to obtain the required function ®(uy, u,). Without considering
this more complex problem here, we will confine ourselves to considering the motion, assuming the function A u1, uy) to be known.

Equations (5.1) for each value of £ determine the state of the medium with elastic potential Fu1, uy), the stresses in which along the x;
and x; axes are equal to the current values of the functions A; and A,. The problem of determining the possible states u;, which satisfy Eqs
(5.5), reduces to finding the stationary points of the function

N(uy, uy) = Fuy, uy) + Ajuy+ Ayu,y (5.3)

Since A; and A, are functions of &, the position of the stationary points will also depend on &. The coordinates of one of the stationary
points of this function determine the current values of u;(&€) and u,(&), which may vary continuously as & changes, and may undergo
discontinuities which satisfy conditions (5.2).
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